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DISCLAIMER 
 
This document was prepared as an account of work sponsored by an agency of the United 
States Government.  Neither the United States Government nor the University of 
California nor any of their employees, makes any warranty, express or implied, or 
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness 
of any information, apparatus, product, or process disclosed, or represents that its use 
would not infringe privately owned rights. Reference herein to any specific commercial 
product, process, or service by trade name, trademark, manufacturer, or otherwise, does 
not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or the University of California.  The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States 
Government or the University of California, and shall not be used for advertising or 
product endorsement purposes. 
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Abstract 
 
This document contains information regarding the standard procedures used to calibrate 
chemical kinetics parameters for the extended Prout-Tompkins model to match 
experimental data.  Two methods for calibration are mentioned: EZM calibration and 
GLO calibration.  EZM calibration matches kinetics parameters to three data points, 
while GLO calibration slightly adjusts kinetic parameters to match multiple points.  
Information is provided regarding the theoretical approach and application procedure for 
both of these calibration algorithms.  It is recommended that for the calibration process, 
the user begin with EZM calibration to provide a good estimate, and then fine-tune the 
parameters using GLO.  Two examples have been provided to guide the reader through a 
general calibrating process. 
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About the Extended Prout-Tompkins Model 
A simple, universal, and functionally accurate kinetics model of the thermal 
decomposition of various explosives would save computational resources for the 
incorporation of non-traditional explosives into large-scale cookoff simulations.  
Wemhoff and Burnham [1] have explored substituting a sequential reaction process by a 
single reaction model that incorporates aspects of nucleation and propagation: the 
extended Prout-Tompkins model [2], 
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where A is the frequency factor in units of reciprocal time and E is the activation energy 
in units of energy per mole.  In this document, for clarity we introduce the parameter p, 
 
 

! 

p = "log10 1" q( )  (3a) 
 
which may also be solved for q as 
 
 

! 

q =1"10
"p   (3b) 

 
which contains the property that if p contains no nonzero values after the decimal point, 
then it is identical to the number of 9's after the decimal point for q.  For example, for q = 
0.9999, p = 4.0. 
 
In order to use the above kinetics model, Wemhoff and Burnham [1] explored the effects 
of adjusting the various parameters on the time to explosion for the ODTX experiment.  
Therefore, several test runs of RDX were performed to determine the effect of varying 
these parameters.  In these runs, the parameters E/R and A were maintained at 20000 K 
and 1×1015 per sec, respectively, except in a single case where A was adjusted to match 
the highest temperature data point between curves for n = 0, m = 1 and n = 0, m = 0.  The 
two extreme values of p were used in Figures 1a and 1b (2 and 9, respectively), where 
any value of q less than 2 is unphysical per the Prout-Tompkins approximation (see [1]), 
while any value higher than 9 is read as q = 1 into ALE3D, which causes no reaction to 
proceed per Eq. (1).  The values of n used were 0.0 and 1.0, while the values of m used 
were 0.0, 0.5 and 1.0.  These curves suggest the following: 
 

• Increasing the parameter p tends to flatten out the ODTX trend and generally 
increases the time to explosion (i.e. it shifts the curve upwards). 
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• Increasing the parameter m also tends to flatten out the curve and shifts it upward 
in a manner similar to increasing p, although the value of m has a more 
pronounced effect on the location of the bend in the curve. 

• Increasing the parameter n has very little effect on the calculation except near the 
critical temperature. 

 
 

 
 
  FIGURE 1a.  Simulated ODTX trends for RDX for p = 9. Value of  
  adjusted frequency factor for open triangles is 1.04×1018 per sec. 
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  FIGURE 1b.  Simulated ODTX trends for RDX for p = 2. Value of  
  adjusted frequency factor for open triangles is 5.70×1016 per sec. 
 
 

Background of The EZM and GLO Calibration Methods 
The general knowledge of the characteristics of varying these parameters allows for the 
choice of calibration techniques for a given explosive.  For example, Figure 1a shows that 
the curvature of the ODTX curve reduces as p increases.  In addition, Figure 1b shows 
that the choice of m has a large influence on the location of the bend in the ODTX curve.  
Therefore, knowledge of the calibration data allows for two general approaches for 
calibration: 
 

• If the experimental data appear in an approximately straight line, then set the 
value of p to its highest allowable value (generally 9) after the decimal point, n = 
0, and m = 1. A and E are the primary parameters optimized.  The initial use of n 
= 0 is preferred for numerical stability. 
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• If the experimental data contain a large increase in explosion times at low 
temperatures, then set the value of p to a lower number (generally 3) and adjust 
the values of A, E, and m accordingly to create the bend in the simulated curve. 

 
The approach for each explosive generally falls under one of the two above strategies.  
The dependence on n is sufficiently weak that it may be optimized in a final fine-tuning 
to match low-temperature data if necessary.  However, ODTX data is usually insufficient 
to constrain n, and its value is probably best determined by independent evidence.  
Thermal analysis data supports n values closer to unity.  Better guidance is a matter of 
current research. 
 
The first step in calibration is to determine representative data points for use in the 
simulations.  The LLNL Explosives Guide [3] provides experimental ODTX results for a 
wide variety of explosives and temperatures.  Generally, one or several of these data 
points are used for a given calibration technique, and the choice of data points should 
provide a reasonable approximation of the explosion time-temperature curve.   
 
There are several approaches for calibrating the parameters in Eq. (1) to match ODTX 
data.  These calibration techniques are now described, ranging from simplest to most 
complex.  The increase in complexity in the iterative calibration techniques is meant to 
follow an increase in usefulness of the techniques for attaining accurate parameters.  In 
ALE3D, the Prout-Tompkins reaction is generally input as 
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where erx = E in cal/mol, and 

! 

zrx = ln 10"6A s"1[ ]( ) .  It should be noted that the parameter 
rhopow = 1 - m - n is used to convert the Prout-Tompkins reaction from the default mass 
concentration basis to a mass fraction basis in ALE3D.  The only reaction considered in 
this study is the direct decomposition of solid material to gaseous products, and therefore 
melting was not taken into account.  Therefore, the parameters to be calibrated are zrx, 
erx, m, n, and q. 
 

Single Parameter - Single Point Iterative Calibration 
This algorithm allows the user to calibrate the parameters in ALE3D by adjusting a single 
kinetics parameter to match results for a single datum.  In this simple program, the user 
inputs the following variables: 

• parameter to be optimized 
• goal time in seconds 
• maximum number of iterations 
• minimum and maximum parameter value 
• run temperature 
• convergence tolerance 
• parameter adjustment algorithm 
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The code first checks that the goal may be reached by determining explosion times for 
the minimum and maximum parameter values.  If the goal lies between these calculated 
explosion times, then calibration is possible.  An example is shown schematically in 
Figure 2, where the time-to-explosion t increases as the parameter m increases, and the 
time-to-explosion goal tgoal is found to exist for a parameter value in the range mmin < m < 
mmax, assuming that there exists only one value of t for a given m.  Note that the 
descriptors min and max refer to the parameter m only; i.e. the value of tmax may be lower 
than tmin if the general slope of the curve is negative. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  FIGURE 2.  Schematic of example relationship between m and t.  
 
 
The code attempts to calibrate the parameter in two ways.  These procedures are repeated 
until either the maximum number of iterations or the convergence criterion has been met.  
The linear interpolation algorithm is the default method for all iterative calibration 
techniques. 
 

• Simple bracketing: if none or only one of the calculated times-to-explosion are 
known for the edges of the bracketing window, then the new parameter value is at 
the center of the bracketing window as shown in Figure 3, and mathematically by 
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For each iteration, the algorithm also replaces the value of either mmin or mmax 
based upon the calculated value of t, which reduces the bracketing window by 
one-half during each iteration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  FIGURE 3.  Simple bracketing algorithm schematic. 
 
 
• Linear interpolation: if both calculated times-to-explosion are known at the edges 

of the bracketing window, then the new parameter value is found using linear 
interpolation as shown in Figure 4.  The updated value is found by 
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  FIGURE 4.  Linear interpolation method schematic. 
 

• Shifted linear interpolation: this algorithm provides a modification to the standard 
linear interpolation algorithm to take curvature effects into account.  An example 
of this is shown in Figure 5, where the large curvature of the time curve shifts the 
value of m2 from m2L to m2P.  This algorithm is only implemented when the 
calculated time is far from the goal and when no shifting had taken place the 
previous time step.  An applied relaxation factor continually updates after each 
shifting step to increase accuracy.  Table 1 shows that studies of this algorithm 
have shown significant reduction in the required number of iterations compared to 
where no shifting was applied when the curvature of the dependent variable curve 
is large. 
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 FIGURE 5. Shifted linear interpolation method schematic. 
 
 

 
TABLE 1.  Comparison of convergence efficiency from application of shifting 
algorithm.  The range for all equations is 0.1<x<5.0, the goal is 15.0, and the  
 convergence tolerance is 1%. 

Steps Required for Convergence Equation 
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! 

t = exp m( ) 23 6 

! 

t = m
2  5 5 
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3  15 7 
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Coupled erx-zrx Two Point Iterative Calibration 
The single parameter-single point iterative calibration tool assumes no coupling between 
the parameters.  However, the compensation relationship between the parameters erx and 
zrx allow for coupling by using two data points.  The rationale for this may be seen in 
Equation (4), where the rate of reaction may be expressed as 
 
 

! 

k x,T( ) = kc T( )xn 1" qx( )
m   (5) 

 
where 
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T( ) = exp zrx "

erx

RT
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' 
(   (6) 

 
This algorithm performs two steps.  First, any parameter (although generally either erx or 
zrx is chosen) is adjusted for a single temperature Tc using the aforementioned single 
parameter-single point iterative algorithm.  Then, the value of kc is determined for this 
temperature using Eq. (6).  Then, the single parameter-single point algorithm is repeated 
at a different temperature.  Preservation of kc(Tc) requires that 
 
 

! 

erx = RT
c
zrx " lnk

c( )  (7) 
 
The resultant adjusted values of erx and zrx provide times to explosion that match two 
calibration points within the convergence tolerance.  Figure 6 depicts what an example 
simulated curve would look like using this calibration method. 
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  FIGURE 6.  Schematic of resultant calibrated curve using coupled erx-zrx 
  two-point calibration. 
 
 
 

EZM Three Point Iterative Calibration 
The EZM (erx-zrx-m) three point iterative calibration algorithm is an extension of the 
coupled erx-zrx two point iterative calibration to allow for additional adjustment of m for 
a third data point.  Figure 7 provides a depiction of how this algorithm works.  At each 
step, the value of m is iterated based on a calculated time for a third data point, where the 
parameters erx and zrx are previously calibrated for two other points on the curve.  The 
resultant simulated curve passes through three calibration points as shown in Figure 8.  
Although this technique is powerful, successful completion of the calibrator calls for 
accurate initial values of erx, n, and q, and correct bounding limits on zrx and m. 
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  FIGURE 7.  EZM iterative calibration algorithm. 
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 FIGURE 8. Schematic of resultant calibrated curve using EZM calibration. 
 
 
 

GLO Calibration 
Although the EZM calibration tool provides an accurate means to calibrate parameters to 
match experimental data, the algorithm is limited to only three calibration points and to 
the parameters erx, zrx, and m.  Use of LLNL's Global Local Optimizer (GLO) code 
allows for calibration of multiple parameters for multiple calibration points.  The GLO 
code allows for two choices for optimization: global and local [4].  The global 
optimization tool is generally used for parametric studies, while the local optimization 
tool searches for local minima using the method of steepest descents.  Since kinetic 
parameter calibration requires a local optimization, the local optimization tool was 
primarily used in this study.  The input to the code is a bracketing window for all 
parameters (similar to that shown in Figure 2), and initial values for each.  Another input 
is the Figure-of-Merit (FOM) evaluation, which was defined as 
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where Np data points were used.  For each GLO iteration, the parameters were placed in a 
Perl script, which in turn spawned an ALE3D run for each of the data points, as shown in 
Figure 9.  The results from all ALE3D runs were stored in a text file, which was then read 
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for post-simulation determination of the FOM.  This FOM was then fed back into GLO 
for consideration of the adjustment of parameters.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  FIGURE 9.  Data flow schematic for a GLO run. 
 
 
The code adjusts the parameters by first determining the gradients along the FOM 
surface, and then taking a Newton step using the method of steepest descents.  If the 
result of the Newton step yields a FOM larger than at the previous location, then a 1-d 
minimization subroutine is called to determine the lowest FOM along the 1-d slice 
between the points before and after the Newton step.  Figure 10 shows a typical history of 
the FOM value for a GLO run where two parameters are calibrated. 
 

ALE3D 

GLO 

Perl script Results file 

m, n, q, 
erx, zrx 

ALE3d 
input 
decks 

ALE3d 
output 
data 

FOM 

Times to 
explosion 

1 2 3 Np 

1 2 3 

ALE3D ALE3D ALE3D 

Np 



  UCRL-TR-225940 
 

18 

 

 
 FIGURE 10.  Example Figure of Merit adjustment history for a simulation where 
  two parameters are calibrated. 
 
 

Running the Calibration Codes 
When initializing a calibration process, the first step is to make sure that the working 
directory contains all the necessary files.  These are: 

1. PT_inputmake.pl: creates (and has the option to run) the EZM calibrator 
script. 

2. b-ezm_calibrator.pl: base EZM calibrator file (not used directly). 
3. auto_optimizer.pl: runs either a one-parameter optimization or a coupled 

erx-zrx calibration. 
4. autovary_odtx.pl: runs an ODTX or STEX simulation at a specified 

temperature or ramp rate. 
5. b-odtx-lx10-100.in: base ALE3D input deck (not used directly). 
6. b-lx10-kin_bd_v01.in: base ALE3D kinetics input deck (not used directly). 
7. b-lx10-mtl_bd_v01.in: base ALE3D material input deck (not used directly). 
8. cleaner: list of UNIX commands to remove unnecessary files after a calibration 

run. 
9. sphh.sami: Mesh used in ODTX simulations. 
10. glomake.pl: Creates the GLO input file for fine-tuning of kinetic parameters. 
11. auto_cleanup.pl: Cleans up directories created during a GLO run. 
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Several other files will be created during the calibration process.  Figure 11 below 
sketches out how the codes create new files: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 11.  Files created during the calibration process. 
 
 
The second step is to create the appropriate input decks using PT_inputmake.pl.  This 
script reads in the general parameters of the simulation, and creates the appropriate EZM 
script setup along with the ALE3D input decks.  Table 2 lists the parameters to be input 
to PT_inputmake.pl.  The rules for this input deck are as follows: 

• Lines with parameter names must include at least one space between the name 
and value. 

• The parameter name must appear prior to the parameter value. 
• ODTX data must include at least one space between the name and ODTX 

temperature, and at least one space between the ODTX temperature and ODTX 
time. 

• Commented lines contain an asterisk "*" in the first column. 
• Blank lines are allowed. 
• Blank spaces before variable names are allowed but not required. 

 
To run the script, type at the prompt 
 
perl PT_inputmake.pl 
 
and supply the appropriate command-line flags (default values in parentheses, input line 
flags in brackets): 

• Input file name (input.txt)[-i] 
• Run the EZM calibrator automatically after creating the ALE3D input deck [-r] 

User Input 
File PT_inputmake.pl 

ezm_calibrator.pl 

READ 

CREATE 

odtx-lx10-100.in 

lx10_kin_bd_v01.in 

lx10_mtl_bd_v01.in 

auto_optimzer.pl 

CALL 
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• Obtain help info [-h] 
 
TABLE 2.  Input variables to PT_inputmake.pl. 

Parameter Default Value(s) Description 
General Material Properties 

matname gen_mat Material Name 
ref_density 1.0 Reference density, g/cc 

solid_cv 1.e-5 Solid heat capacity at constant volume, 
Mbar-cc/(g-K) 

solid_cond 1.e-14 Solid thermal conductivity,  
Mbar-cc/(cm-us-K) 

prod_cv 1.e-5 Products heat capacity at constant volume, 
Mbar-cc/(g-K) 

prod_cond 5.e-15 Products thermal conductivity,  
Mbar-cc/(cm-us-K) 

prod_energy 1000 Energy released by reaction in cal/g 
prod_coeff 0.3 Products gamma-law gas coefficient 

Prout-Tompkins Calibration Parameters 
pt_p 9 Prout-Tompkins parameter p = -log10(1-q) 
pt_n 0 Prout-Tomkins parameter n 

itmax_m 20 Maximum number of iterations over the 
Prout-Tompkins parameter m 

itmax_z 20 Maximum number of iterations over the 
Prout-Tompkins parameter zrx 

tol_m 0.01 Convergence tolerance for m 
tol_z 0.01 Convergence tolerance for z 

pt_mmin 0 Minimum value of m 
pt_mmax 1 Maximum value of m 
pt_zmin 5 Minimum value of zrx 
pt_zmax 30 Maximum value of zrx 

ignore_warn 0 Ignore warnings from ALE3D? = 1 for yes 
verbose 0 Verbose output from the EZM calibrator? 

= 1 for yes 
convquit 0 Quit EZM calibrator if there's no 

convergence? = 1 for yes 
ALE3D Run Parameters 

gen3dexe /usr/apps/ale3d/bin/gen3d Path for GEN3D executable 
ale3dexe /usr/apps/ale3d/bin/ale3d Path for ALE3D executable 
use_srun 0 Use SLURM (srun) to run ALE3D? = 1 

for yes 
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TABLE 2. Input variables to PT_inputmake.pl (continued). 
Parameter Default Value(s) Description 

ODTX Data 
odtx_pts 2 Number of ODTX points (2 or 3) 
odtx_1 0   0 Parameter 1: ODTX temperature (°C) for 

point 1 
Parameter 2: ODTX time (sec) for point 1 

odtx_2 0   0 Parameter 1: ODTX temperature (°C) for 
point 2 

Parameter 2: ODTX time (sec) for point 2 
odtx_3 0   0 Parameter 1: ODTX temperature (°C) for 

point 3 
Parameter 2: ODTX time (sec) for point 3 

 
Note that if odtx_pts is equal to 2, then the following occurs automatically: 

• Any input for odtx_3 is ignored. 
• The parameter pt_p is set to 9. 
• The parameter itmax_m is set to 1. 
• The parameter tol_m is set to 1. 
• The parameters pt_mmin and pt_mmax are set to 1. 
• The parameter pt_n is set to 0. 

 A sample input deck to PT_inputmake.pl is seen below. 
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* This is a sample input deck for the PT_inputmake.pl. 
* All entries here are default values and should be entered in 
* B-division units, except the product energy in cal/g.  Some of 
* these parameters are the same as the default and thus may be 
* ommitted. 
 
  matname mymat 
  ref_density 1.61 
  solid_cv 1.3e-5 
  solid_cond 9.5e-14 
  prod_energy 1108 
  prod_cv 1.1e-5 
  prod_cond 7.9e-15 
  prod_coef 0.279 
 
* These are used for determining the calibration procedure. 
  pt_p 3 
  itmax_m 20 
  itmax_z 26 
  tol_m 0.2 
  tol_z 0.2 
  pt_mmin 0 
  pt_mmax 1 
  pt_n 8 
  pt_zmin 1 
  pt_zmax 50 
  ignore_warn 1 
  verbose 1 
  convquit 0 
 
* These commands are for the path of the ale3d executable &  
* whether to use SLURM (srun)  
  gen3dexe /usr/apps/ale3d/bin/gen3d 
  ale3dexe /usr/apps/ale3d/bin/ale3d 
  use_srun 0 
 
* ODTX values should be listed as a temperature (C) and a time  
* (sec).  The paramter odtx_pts describes the # of pts to be fit  
* to. 
  odtx_pts 3 
  odtx_1 255 19.8 
  odtx_2 165 56916 
  odtx_3 190 2828.2 
 
Two example calibrations are provided later in this report.  The code that actually 
performs the calibration is ezm_calibrator.pl.  The first few lines of the code 
contain the input parameters provided by PT_inputmake.pl.  The EZM calibration is 
initiated by typing  
 
perl ezm_calibrator.pl 
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or by adding the -r flag to the command line for PT_inputmake.pl. 
If any calibration fails, then a more involved approach is needed.  Any given 

calibration run may not be successful for a variety of reasons, including: 
• The input ranges of zrx or m are invalid. 
• More iteration steps may be needed for convergence (if convquit = 1). 
• An ALE3D run may list warnings in chemical or thermal convergence, causing 

the calibrator to stop (if ignore_warn = 0). 
 
The following section describes how to perform the calibration with more control 

by using the "built-in" perlscripts. 
 

Performing a Point-by-Point EZM Calibration 
The ezm_calibrator.pl code acts as a manager of the perlscript 
auto_optimizer.pl.  The latter code calibrates the kinetics for each individual point.  
To run auto_optimizer.pl, type at the command prompt 
 
perl auto_optimizer.pl 
 
and supply the appropriate command-line flags (default values in parentheses, input line 
flags in brackets): 

• Reaction name (pt_solid_to_prod)[-r] 
• Name of main ALE3D input deck (odtx-lx10-100.in) [-mainf] 
• Name of ALE3D kinetics input deck (lx10_kin_bd_v01.in) [-kinf] 
• Parameter to be optimized (zrx)[-v] 
• Temperature (205.1) [-t] 
• Goal time in seconds (23.4) [-g] 
• Maximum number of iterations (10)[-i] 
• Minimum parameter value (5)[-low] 
• Maximum parameter value (50) [-high] 
• Explosion time corresponding to minimum parameter value (unknown) [-lowt] 
• Explosion time corresponding to maximum parameter value (unknown) [-hight] 
• Convergence tolerance (0.01) [-c] 
• Pinned temperature in deg C for coupled erx-zrx calibration [-temp_pin] 
• Use simple bracketing instead of linear interpolation [-simple] 
• Turn off shifting in linear interpolation [-noshift] 
• Maximum ALE3D step size in microseconds (105) [-stepsize] 
• Apply a time limit to the ALE3D runs (2× the goal time) [-time_limit] 
• Ignore warning messages option [-ignore_warn] 
• Use srun (SLURM) for Linux operating systems [-use_srun] 
• Specify GEN3D path (/usr/apps/ale3d/bin/gen3d) [-gen3dexe] 
• Specify ALE3D path (/usr/apps/ale3d/bin/ale3d) [-ale3dexe] 

 
Generally, the only command line flags commonly used for a single-parameter single-
point calibration are -r, -v, -t, -g, -low, -high, and -stepsize.  The purpose of the -lowt 
and -hight flags is to allow the user to "restart" the calibration procedure when the 
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optimal value for the parameter lies outside the input range.  Note that the -d flag 
provides the current kinetic parameters drawn from the kinetics file, and the -h flag 
provides help regarding the various input flags. 
 
Example 2 below will show how to perform this calibration. 
 
Running auto_optimizer.pl generates the following output files in addition to the 
typical ALE3D output files: 
 

• g-mainfile-i.in, where mainfile is the main ALE3D input file, and i is the 
iteration number: the modified input file for iteration i. 

• optimized.res: parameter value and corresponding explosion time for each 
iteration 

• warnings.out: any warning messages from ALE3D that terminates the script 
(deleted if empty at the end of the run) 

 

Performing a GLO Calibration 
A GLO input generator perlscript glomake.pl has been developed as an aid to the user.  
This perlscript requires a base ALE3D input deck divided into three files: a main file, a 
materials file, and a kinetics file.  The generator copies and modifies these files into the 
GLO input deck.  The following is needed when running glomake.pl (default values in 
parentheses, and input line flags in brackets): 
 

• Name of reaction (pt_solid_to_prod) [-r] 
• Name of main ALE3D input deck (odtx-lx10-100.in) [-mainf] 
• Name of ALE3D kinetics input deck (lx10_kin_bd_v01.in) [-kinf] 
• Name of ALE3D materials input deck (lx10_kin_bd_v01.in) [-mtlf] 
• Name of temperature data points for calibration (datapoints.txt) [-datf] 
• Name of GLO input deck to be created (out.gcf) [-o] 
• Maximum number of GLO iterations (50) [-max] 
• Number of cpu's to be used in a GLO run (1) [-ncpu] 
• Use srun (SLURM) for Linux operating systems [-use_srun] 
• Specify GEN3D path (/usr/apps/ale3d/bin/gen3d) [-gen3dexe] 
• Specify ALE3D path (/usr/apps/ale3d/bin/ale3d) [-ale3dexe] 
 

Multiple reactions and materials are allowed in the materials and kinetics input decks.  
All changes in the kinetics input decks are applied to the specified reaction.  In the data 
points input, each point is read in as two columns: temperature and goal time.  
Commented lines contain an asterisk (*).  The same input rules for the 
PT_inputmake.pl input file apply for the input to glomake.pl as well.  An example 
valid data points input file datapoints.txt is shown below: 
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* temp goal 
300.0   12.1 
285.0   24.3 
260.3   65.9 
250.1   571.6 
240.6   2842.0 
 
Upon completion of the deck, GLO may be run interactively using 
 
glo out.gcf 
 
where here out.gcf is the name of the GLO input deck, and glo is aliased to the 
executable for a given machine (see the GLO user manual [4] for details).  The GLO 
input deck name may be set using the -o flag in glomake.pl.  This code is also 
commonly run in the background via 
 
glo out.gcf >& out.out < /dev/null & 
 
Similar command-line arguments are used for GLO restarts, and further information is 
available in the GLO user manual [4]. 
 
 

Running a Set of Sequential Runs with the Same Kinetic Parameters 
In many cases, the calibrated parameters are based on a fraction of the total available 
ODTX data for a given explosive.  Therefore, the user may want to compare predictions 
from the calibrated model to the remaining unused ODTX data points, or verify the 
accuracy of the calibrated parameters to used ODTX data points.  The script 
autovary_odtx.pl was created for this purpose.  This simple script allows the user to 
run a series of ALE3D simulations at different temperatures (or ramped boundary 
conditions).  Command line flags for this script are: 
 

• Parameter to be adjusted: (temp) or ramp [-v] 
• Problem geometry: (0.5sph), 1sph, 2sph, 0.02cy, 2cy, 0.02cy2D, 2cy2D, SITI [-g] 
• Number of runs: (1) [-imax] 
• Initial parameter value (1) [-init] 
• Sequential change in parameter value (1) [-delta] 
• Maximum ALE3D step size in microseconds (105) [-stepsize] 
• Add delta instead of subtract delta for each subsequent run [-add] 
• Keep all ALE3D files after run [-noclean] 
• Ignore warning messages after run [-ignorewarn] 
• Specify a time limit in seconds [-time_limit] 
• Use srun (SLURM) for Linux operating systems [-use_srun] 
• Specify GEN3D path (/usr/apps/ale3d/bin/gen3d) [-gen3dexe] 
• Specify ALE3D path (/usr/apps/ale3d/bin/ale3d) [-ale3dexe] 
• Use a list of temperatures instead of a fixed increment [-list] 
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The -list flag overrides any of the fixed-increment flags (-imax, -init, and -delta).  The 
user specifies the name of the file with the temperatures and goal values (exactly the 
same format as the data points file mentioned for glomake.pl above).  For example, if 
the user types the command: 
 
perl autovary_odtx -init 300 -delta 5 -imax 2 
 
the script will provide 3 ALE3D simulations: at 300 C, 295 C, and 290 C.  If the user 
types the same command, except adds the -list flag: 
 
perl autovary_odtx -init 300 -delta 5 -imax 2 -list 
datapoints.txt 
 
where datapoints.txt is a text file containing two columns: one for temperature and 
one for the approximate time for explosion.  The results from the run are summarized in 
the file odtx-lx10.res.   
 

Examples 
Two examples are now provided that show how the aforementioned codes are used.  The 
first example shows how to calibrate for a series of ODTX data that fall in a straight line, 
while the second example shows how to use the codes in detail to perform an EZM 
calibration. 

Example 1: Two-Point Calibration 
In this example calibration, the experimental ODTX data for material ExpOne are shown 
in Figure 12 below.  Since the data appear in a straight line, a standard Excel fit-curve 
relation to the data provides two calibration points at the two extremes of the temperature 
range: (300°C, 23.4 s) and (220°C, 5739 s).  Assume that the thermal properties are the 
same as the default values in the input deck. 
  

Temperature, 
°C 

Time, sec 

300 20 
290 55 
280 78 
270 105 
260 342 
250 811 
240 1254 
230 2600 
220 5000   

FIGURE 12.  Example 1 explosive ODTX data. 
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Since the thermal properties are the same as default, then the input deck to 
PT_inputmake.pl is very simple: 
 
matname ExpOne 
odtx_1 300 23.4 
odtx_2 220 5739 
 
Note that this example is applied on the GPS cluster (and hence no srun command is 
needed)  For a Linux cluster, the parameter use_srun should be set to 1.  The input 
decks for ALE3D and the EZM calibrator is generated using the command 
 
perl PT_inputmake.pl -i input_ex1.txt 
 
where input_ex1.txt is a text file containing the above 3 lines.  The EZM calibrator 
may then be run by typing 
 
perl ezm_calibrator.pl 
 
While the calibrator is running, the code will list a lot of error messages such as "No such 
file or directory" or "[0] MPI Abort by user Aborting program!"  These messages are to 
be expected and the user should not be alarmed.  After a while, the calibrator converges 
on the first point (zrx ~ 12.6), and then moves on to the second point, where it converges 
at (zrx = 23.0, erx = 41844).  It will then re-run at the first point to check for the effect of 
the new zrx and erx on the first point (the convergence is reduced from 0.01 to 0.09).  At 
the end of the run, the EZM calibrator output states the converged parameters (the 
aforementioned erx and zrx, and m = 1).  These values have been automatically updated 
in the kinetics file (lx10_kin_bd_v01.in). 
 
After the run, the calibrator has produced a large number of files that can be removed.  
This is accomplished by using the cleaner by typing 
 
source cleaner 
 
This removes the unwanted ALE3D files.  If interested, the user may look at the various 
*.out files that describe the calibrator's attempt to converge for each of the three points. 
 
A check on the calibrated kinetics curve can be produced using 
 
perl autovary_odtx.pl -list data_ex1.txt 
 
where data_ex1.txt is a text file containing the data table similar to that in Figure 12.  
This creates simulated ODTX times for each of the experimental temperature values.  
The resultant plotted simulated data are shown in Figure 13. 
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FIGURE 13.  Simulated ODTX data using the EZM calibrator compared to experimental 
data for the example material. 
 
 
To fine-tune the kinetic parameters using GLO, type at the command prompt 
 
perl glomake.pl -datf data_ex1.txt -o ex1.gcf 
mkdir GLO 
cp ex1.gcf GLO 
cp sphh.sami GLO 
cp auto_cleanup.pl GLO 
cd GLO  
glo ex1.gcf 
 
Once GLO has finished its run, the excess files in each directory may be removed by 
typing 
 
perl auto_cleanup.pl 
 
The GLO run has produced several directories beginning with the letter p (e.g. p0001).  
To determine which directory to keep, open the ex1.u1 file and choose the iteration with 
the lowest figure of merit.  The directory contains the values of the kinetic parameters in 
the varvals file and simulated ODTX times in the results.res file.  Figure 12 shows 
that GLO does not significantly change the kinetic parameters and corresponding ODTX 
results for this example. 
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Example 2: Three-Point Calibration 
 
This second example shows how to calibrate parameters when a bend exists in the data.  
The data, shown below in Figure 14, show a pronounced dogleg at 1000/T = 1.95.  For 
this example, three ODTX points are used, and the value of p used is 2 to account for the 
bend.  Assume that the material properties for this explosive, ExpTwo, are the same as 
the default parameters. 
 

Temperature, 
°C 

Time, sec 

300 20 
290 35 
280 50 
270 60 
260 80 
250 150 
240 300 
230 1000 
220 5000   

FIGURE 14.  Example 2 explosive ODTX data. 
 
First, three representative data points must be chosen.  Here, we choose the two extremes 
of the temperature range and a point at the base of the bend.  An example input for this 
explosive is provided below: 
 
matname ExpTwo 
 
pt_p 2 
ignore_warn 1 
 
odtx_pts 3 
odtx_1 300 20 
odtx_2 220 5000 
odtx_3 250 150 
 
Although running the EZM calibrator will converge to a solution on its own, here we will 
examine how to manually calibrate using auto_optimizer.pl. The execution of this 
perlscript for the first point is as follows: 
 
perl auto_optimizer.pl -t 300.0 -g 20 -low 5 -high 30 -stepsize 
1.e5 
 
The script opens the kinetics file and determines the reactants and products for the default 
reaction pt_solid_to_prod.  The external boundary temperature is set at 300°C, the 
maximum time step size is set to 0.01 sec, and the parameter zrx is varied between 5 and 
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30 until the sample explodes at 20 sec (+/- 1%).  The resultant calibrated value of zrx for 
the first point is approximately 7.74.   
 
The coupled erx-zrx calibration may also be implemented via this perlscript.  If the above 
line were used to calibrate zrx for the first point (300.0 C, 20 sec), then the coupled erx-
zrx algorithm may be implemented at a second point (220 C, 5000 sec), using the -
temp_pin flag.  Update the kinetics file with the value of zrx obtained for the first point, 
and then enter the following command line to calibrate erx and zrx for the second point 
using the coupling at the first point: 
 
perl auto_optimizer.pl -t 220 -g 5000 -low 5 -high 30 -stepsize 
1.e7 -temp_pin 300 
 
This tells the script to attach the pre-calibrated values of erx and zrx to the temperature 
300°C, thus establishing the coupling of the two parameters using Eq. (7), which is then 
implemented during each successive update to zrx. This calibrates erx and zrx to be 
approximately 42,121 and 18.4, respectively. 
 
To complete the EZM calibration, update the kinetics file with the new erx-zrx pair, and 
then test the new parameters with the current value of m (m = 0 for this iteration) at the 
third point.  Although there are several ways to achieve this, the easiest is by running 
autovary_odtx.pl at the third point temperature: 
 
perl autovary_odtx.pl -init 250 -stepsize 1.e5 -time_limit 300 
 
This results in an explosion time of 126 seconds for m = 0. 
 
The user then adjusts the value of m in the kinetics file and repeats the above process 
until convergence is completed for the third point.  This process becomes reasonably 
efficient with use of the history command at the unix prompt to re-run previous 
auto_optimizer.pl calls.  A good general practice is to determine the bounds of m, 
update ezm_calibrator.pl, and then run the latter perl script.  Repeating the above 
process with m = 1 yields the values erx = 45,821, zrx = 24.9 and a time to explosion of 
206 seconds at 250°C.  Therefore, ezm_calibrator.pl can be updated by changing 
the lines 
 
$lowt = 126; 
$hight = 206; 
 
Running ezm_calibrator.pl leads to convergence with the following values: 
 

• erx = 45697 
• zrx = 22.6 
• m = 0.3 
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Note the additional variables available using ezm_calibrator.pl compared to 
auto_optimizer.pl.  Here, we provided known times for the limits of m.  In addition, 
the user can give known calibrated values of zrx at the first point, and known calibrated 
values of erx and zrx at the second point.  This provides a means to save time for 
restarting a calibration process.  Because ezm_calibrator.pl calls 
auto_optimizer.pl, the latter's output files are created, in addition to the following: 
 

• opt-i-zrx.out, where i is an integer: output from the auto_optimizer call for 
the first data point for iteration i. 

• opt-i-zrxerx.out, where i is an integer: output from the auto_optimizer call 
for the second data point for iteration i. 

• opt-i-m.out, where i is an integer: output from the auto_optimizer call for the 
third data point for iteration i. 

• resezm.res: calculated times for the third data point for each iterated value of 
m 

• orig-kinfile, where kinfile is the kinetics file name: a copy of the original 
kinetics file (modifications are made to the kinetics file during the calibration 
process) 

 
Figure 15 below compares the simulated and experimental ODTX values for material 
ExpTwo.  Further refinement of parameters may be done using GLO as described in 
Example 1. 
 

 
FIGURE 15.  Simulated ODTX data using the EZM calibrator compared to experimental 
data for the material ExpTwo. 
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